Pick three students to perform aloud pages 11–17 from the book. Prior to a public performance, have students look through the pages and identify their character. Students can then use the scripts provided on this CD-ROM to practice their parts. Suggested props: lab coat and sunglasses for Max Axiom, safety glasses and helmet for Denise, set of walkie-talkies.

Main Script

Scene One: Max Axiom arrives at a power plant . . .

Narrator: Renewable energy is a source that cannot be used up completely. Water in rivers or the heat from the sun are renewable energy sources. Energy from coal and oil can be used up. They are examples of nonrenewable energy.

Max: Energy resources are transformed into electricity at power plants. Denise is an operator at this coal-fired power plant, where coal is burned to make electricity.

Denise: That’s right, Max! Nearly a million and a half tons of coal travel up this conveyor belt each year. Come on. I’ll show you where all this material is headed.

Scene Two: Denise shows Max a diagram of the plant . . .

Denise: In the plant, the coal is burned to heat a boiler of water and create steam. As you can see from this diagram, the steam travels along that pipe to an engine called a turbine.

Scene Three: Denise takes Max on a tour of the plant . . .

Denise: Inside a steel casing, steam passes through the turbine’s blades and spins a giant magnet inside the generator.

Max: Hang on a second, Denise. Let me take a closer look.

Narrator (as Max looks at the generator with his special glasses):

- **Turbine:** Steam from boiling water turns the blade on this machine.
- **Magnet:** The turbine spins a giant magnet, causing electrons to jump from their atoms.

- **Wire Coil:** Jumping electrons are captured and pushed along a coiled wire.
- **Electric Flow:** The charged electrons flow out of the generator as electricity.

Max: Thanks for the tour, Denise. I’m headed to the roof to see where the electricity is going next.

Denise: Anytime, Max! Take this walkie-talkie and give me a call if you need anything else.

Scene Four: Max goes up to the roof of the power plant . . .

Max: Wind turbines create power in much the same way. Instead of steam, blowing wind turns the turbine. Fast moving water can turn turbines as well. Once the electricity is created, it has to travel from the generator to our homes. That’s why we’ve come to the roof. Electricity created in the generator travels along power lines. In some places, the wires are underground. The electricity travels through the wires all the way to our homes. Now, that’s door-to-door service!

Denise (through the walkie-talkie): How’s everything going up there, Max?

Max: Excellent, Denise. I’m on my way back down.

(Back in the elevator) This walkie-talkie uses electricity but isn’t attached to power lines. Some small gadgets get power from batteries. Batteries are like mini power generators. But they create electricity using special chemicals. Inside a steel casing, the chemicals mix with water and zinc to form a paste. Electrons in the paste travel out of the battery through a brass pin called a collector. Wires carry electrons through the gadget as electricity.
Scene Five: Max is back on the ground. . .

Max: Just like batteries, power plants push electrons through wires. This flow of electricity is called a current.

Denise: And you better hurry to keep up, Max! Electricity moves at the speed of light.

Narrator: Light Speed: Light travels at 186,000 miles per second, taking only 1.2 seconds to reach the moon from earth.

Max: The force of the push behind the current is measured in volts. More volts means more electrical power. Batteries in a TV remote push 1.5 volts of electricity. Those power lines carry about 400,000 volts!
Scene One: Max Axiom arrives at a power plant . . .

Narrator: Renewable energy is a source that cannot be used up completely. Water in rivers or the heat from the sun are renewable energy sources. Energy from coal and oil can be used up. They are examples of nonrenewable energy.

Max: Energy resources are transformed into electricity at power plants. Denise is an operator at this coal-fired power plant, where coal is burned to make electricity.

Denise: That’s right, Max! Nearly a million and a half tons of coal travel up this conveyor belt each year. Come on. I’ll show you where all this material is headed.

Scene Two: Denise shows Max a diagram of the plant . . .

Denise: In the plant, the coal is burned to heat a boiler of water and create steam. As you can see from this diagram, the steam travels along that pipe to an engine called a turbine.

Scene Three: Denise takes Max on a tour of the plant . . .

Denise: Inside a steel casing, steam passes through the turbine’s blades and spins a giant magnet inside the generator.

Max: Hang on a second, Denise. Let me take a closer look.

Narrator (as Max looks at the generator with his special glasses):

- **Turbine:** Steam from boiling water turns the blade on this machine.
- **Magnet:** The turbine spins a giant magnet, causing electrons to jump from their atoms.
- **Wire Coil:** Jumping electrons are captured and pushed along a coiled wire.
- **Electric Flow:** The charged electrons flow out of the generator as electricity.

Max: Thanks for the tour, Denise. I’m headed to the roof to see where the electricity is going next.

Denise: Anytime, Max! Take this walkie-talkie and give me a call if you need anything else.

Scene Four: Max goes up to the roof of the power plant . . .

Max: Wind turbines create power in much the same way. Instead of steam, blowing wind turns the turbine. Fast moving water can turn turbines as well. Once the electricity is created, it has to travel from the generator to our homes. That’s why we’ve come to the roof. Electricity created in the generator travels along power lines. In some places, the wires are underground. The electricity travels through the wires all the way to our homes. Now, that’s door-to-door service!

Denise (through the walkie-talkie): How’s everything going up there, Max?

Max: Excellent, Denise. I’m on my way back down.

(Back in the elevator) This walkie-talkie uses electricity but isn’t attached to power lines. Some small gadgets get power from batteries. Batteries are like mini power generators. But they create electricity using special chemicals. Inside a steel casing, the chemicals mix with water and zinc to form a paste. Electrons in the paste travel out of the battery through a brass pin called a collector. Wires carry electrons through the gadget as electricity.
Scene Five: Max is back on the ground. . .

Max: Just like batteries, power plants push electrons through wires. This flow of electricity is called a current.

Denise: And you better hurry to keep up, Max! Electricity moves at the speed of light.

Narrator: Light Speed: Light travels at 186,000 miles per second, taking only 1.2 seconds to reach the moon from earth.

Max: The force of the push behind the current is measured in volts. More volts means more electrical power. Batteries in a TV remote push 1.5 volts of electricity. Those power lines carry about 400,000 volts!
Scene One: Max Axiom arrives at a power plant . . .

Narrator: Renewable energy is a source that cannot be used up completely. Water in rivers or the heat from the sun are renewable energy sources. Energy from coal and oil can be used up. They are examples of nonrenewable energy.

Max: Energy resources are transformed into electricity at power plants. Denise is an operator at this coal-fired power plant, where coal is burned to make electricity.

Denise: That’s right, Max! Nearly a million and a half tons of coal travel up this conveyor belt each year. Come on. I’ll show you where all this material is headed.

Scene Two: Denise shows Max a diagram of the plant . . .

Denise: In the plant, the coal is burned to heat a boiler of water and create steam. As you can see from this diagram, the steam travels along that pipe to an engine called a turbine.

Scene Three: Denise takes Max on a tour of the plant . . .

Denise: Inside a steel casing, steam passes through the turbine’s blades and spins a giant magnet inside the generator.

Max: Hang on a second, Denise. Let me take a closer look.

Narrator (as Max looks at the generator with his special glasses):

• Turbine: Steam from boiling water turns the blade on this machine.
• Magnet: The turbine spins a giant magnet, causing electrons to jump from their atoms.
• Wire Coil: Jumping electrons are captured and pushed along a coiled wire.
• Electric Flow: The charged electrons flow out of the generator as electricity.

Max: Thanks for the tour, Denise. I’m headed to the roof to see where the electricity is going next.

Denise: Anytime, Max! Take this walkie-talkie and give me a call if you need anything else.

Scene Four: Max goes up to the roof of the power plant . . .

Max: Wind turbines create power in much the same way. Instead of steam, blowing wind turns the turbine. Fast moving water can turn turbines as well. Once the electricity is created, it has to travel from the generator to our homes. That’s why we’ve come to the roof. Electricity created in the generator travels along power lines. In some places, the wires are underground. The electricity travels through the wires all the way to our homes. Now, that’s door-to-door service!

Denise (through the walkie-talkie): How’s everything going up there, Max?

Max: Excellent, Denise. I’m on my way back down.

(Back in the elevator) This walkie-talkie uses electricity but isn’t attached to power lines. Some small gadgets get power from batteries. Batteries are like mini power generators. But they create electricity using special chemicals. Inside a steel casing, the chemicals mix with water and zinc to form a paste. Electrons in the paste travel out of the battery through a brass pin called a collector. Wires carry electrons through the gadget as electricity.
Scene Five: Max is back on the ground. . .

Max: Just like batteries, power plants push electrons through wires. This flow of electricity is called a current.

Denise: And you better hurry to keep up, Max! Electricity moves at the speed of light.

Narrator: Light Speed: Light travels at 186,000 miles per second, taking only 1.2 seconds to reach the moon from earth.

Max: The force of the push behind the current is measured in volts. More volts means more electrical power. Batteries in a TV remote push 1.5 volts of electricity. Those power lines carry about 400,000 volts!
Scene One: Max Axiom arrives at a power plant . . .

Narrator: Renewable energy is a source that cannot be used up completely. Water in rivers or the heat from the sun are renewable energy sources. Energy from coal and oil can be used up. They are examples of nonrenewable energy.

Max: Energy resources are transformed into electricity at power plants. Denise is an operator at this coal-fired power plant, where coal is burned to make electricity.

Denise: That’s right, Max! Nearly a million and a half tons of coal travel up this conveyor belt each year. Come on. I’ll show you where all this material is headed.

Scene Two: Denise shows Max a diagram of the plant . . .

Denise: In the plant, the coal is burned to heat a boiler of water and create steam. As you can see from this diagram, the steam travels along that pipe to an engine called a turbine.

Scene Three: Denise takes Max on a tour of the plant . . .

Denise: Inside a steel casing, steam passes through the turbine’s blades and spins a giant magnet inside the generator.

Max: Hang on a second, Denise. Let me take a closer look.

Narrator (as Max looks at the generator with his special glasses):

- **Turbine**: Steam from boiling water turns the blade on this machine.
- **Magnet**: The turbine spins a giant magnet, causing electrons to jump from their atoms.
- **Wire Coil**: Jumping electrons are captured and pushed along a coiled wire.
- **Electric Flow**: The charged electrons flow out of the generator as electricity.

Max: Thanks for the tour, Denise. I’m headed to the roof to see where the electricity is going next.

Denise: Anytime, Max! Take this walkie-talkie and give me a call if you need anything else.

Scene Four: Max goes up to the roof of the power plant . . .

Max: Wind turbines create power in much the same way. Instead of steam, blowing wind turns the turbine. Fast moving water can turn turbines as well. Once the electricity is created, it has to travel from the generator to our homes. That’s why we’ve come to the roof. Electricity created in the generator travels along power lines. In some places, the wires are underground. The electricity travels through the wires all the way to our homes. Now, that’s door-to-door service!

Denise (through the walkie-talkie): How’s everything going up there, Max?

Max: Excellent, Denise. I’m on my way back down.

(Back in the elevator) This walkie-talkie uses electricity but isn’t attached to power lines. Some small gadgets get power from batteries. Batteries are like mini power generators. But they create electricity using special chemicals. Inside a steel casing, the chemicals mix with water and zinc to form a paste. Electrons in the paste travel out of the battery through a brass pin called a collector. Wires carry electrons through the gadget as electricity.
Scene Five: Max is back on the ground.

Max: Just like batteries, power plants push electrons through wires. This flow of electricity is called a current.

Denise: And you better hurry to keep up, Max! Electricity moves at the speed of light.

Narrator: Light Speed: Light travels at 186,000 miles per second, taking only 1.2 seconds to reach the moon from earth.

Max: The force of the push behind the current is measured in volts. More volts means more electrical power. Batteries in a TV remote push 1.5 volts of electricity. Those power lines carry about 400,000 volts!