Pick six students to perform aloud pages 14–17 from the book. Prior to a public performance, have students look through the pages and identify their character. Students can then use the scripts provided on this CD-ROM to practice their parts. Suggested props: lab coat and sunglasses for Max Axiom, bike helmets and knee/elbow pads for other parts.

Main Script

Scene One: Max Axiom and the kids are at a skate park . . .

Max: I have another way to think about Newton’s second law. I need two volunteers.

Jenny: Pick me!

Johnny: I’ll do it!

Max: I’m going to push both of them with the same amount of force on a level surface. Who do you think will accelerate faster?

Nick: Johnny’s bigger, he’ll go faster!

Other Kid: Jenny’s an awesome skater, she’ll win!

Max: Both of my arms are equally strong. So the amount of force will be the same. Let’s see who gets a faster start.

Scene Two: Max pushes Jenny and Johnny forward . . .

Max: Like the tennis ball, Jenny has less mass than Johnny, so she gets a faster start with the same push. Johnny would need a stronger force to get moving as quickly.

Jenny: I’m like the tennis ball!

Johnny: Does that make me a bowling ball?

Nick: Uncle Max, Jenny won the race on a flat surface. But I’ve noticed that the bigger kids always travel farther than the smaller kids when skating down a ramp.

Max: Sometimes having more mass can give you an advantage. Let’s have Johnny and Jenny race again.

Scene Three: Max, Jenny, and Johnny are at the top of a ramp . . .

Max: In the last race, we wanted to see who would get a faster start. This race is for distance. I’m going to release you at the same time. We’ll see who travels farther without pumping.

Nick: Johnny’s got it in the bag.

Other Kid: No way, Jenny will beat him easily.

Max: Do you see that? Gravity pulls them down the ramp, but Johnny travels farther than Jenny.

Jenny: Max, what happened? I got a good start, but Johnny just passed right by me.

Max: Johnny’s larger mass takes more force to slow down or stop than your smaller mass. Friction between your wheels and the ground was the main force slowing both of you down. Johnny needed more friction to stop, so he traveled farther.

Cake Announcer: Time for cake!

Max: I don’t think these kids will let a little friction stand between them and chocolate cake.
Scene One: Max Axiom and the kids are at a skate park . . .

Max: I have another way to think about Newton’s second law. I need two volunteers.

Jenny: Pick me!

Johnny: I’ll do it!

Max: I’m going to push both of them with the same amount of force on a level surface. Who do you think will accelerate faster?

Nick: Johnny’s bigger, he’ll go faster!

Other Kid: Jenny’s an awesome skater, she’ll win!

Max: Both of my arms are equally strong. So the amount of force will be the same. Let’s see who gets a faster start.

Nick: Johnny’s bigger, he’ll go faster!

Other Kid: Jenny’s an awesome skater, she’ll win!

Max: Both of my arms are equally strong. So the amount of force will be the same. Let’s see who gets a faster start.

Scene Two: Max pushes Jenny and Johnny forward . . .

Max: Like the tennis ball, Jenny has less mass than Johnny, so she gets a faster start with the same push. Johnny would need a stronger force to get moving as quickly.

Jenny: I’m like the tennis ball!

Johnny: Does that make me a bowling ball?

Nick: Uncle Max, Jenny won the race on a flat surface. But I’ve noticed that the bigger kids always travel farther than the smaller kids when skating down a ramp.

Max: Sometimes having more mass can give you an advantage. Let’s have Johnny and Jenny race again.

Scene Three: Max, Jenny, and Johnny are at the top of a ramp . . .

Max: In the last race, we wanted to see who would get a faster start. This race is for distance. I’m going to release you at the same time. We’ll see who travels farther without pumping.

Nick: Johnny’s got it in the bag.

Other Kid: No way, Jenny will beat him easily.

Max: Do you see that? Gravity pulls them down the ramp, but Johnny travels farther than Jenny.

Jenny: Max, what happened? I got a good start, but Johnny just passed right by me.

Max: Johnny’s larger mass takes more force to slow down or stop than your smaller mass. Friction between your wheels and the ground was the main force slowing both of you down. Johnny needed more friction to stop, so he traveled farther.

Cake Announcer: Time for cake!

Max: I don’t think these kids will let a little friction stand between them and chocolate cake.
Scene One: Max Axiom and the kids are at a skate park . . .

Max: I have another way to think about Newton’s second law. I need two volunteers.

Jenny: Pick me!

Johnny: I’ll do it!

Max: I’m going to push both of them with the same amount of force on a level surface. Who do you think will accelerate faster?

Nick: Johnny’s bigger, he’ll go faster!

Other Kid: Jenny’s an awesome skater, she’ll win!

Max: Both of my arms are equally strong. So the amount of force will be the same. Let’s see who gets a faster start.

Scene Two: Max pushes Jenny and Johnny forward . . .

Max: Like the tennis ball, Jenny has less mass than Johnny, so she gets a faster start with the same push. Johnny would need a stronger force to get moving as quickly.

Jenny: I’m like the tennis ball!

Johnny: Does that make me a bowling ball?

Nick: Uncle Max, Jenny won the race on a flat surface. But I’ve noticed that the bigger kids always travel farther than the smaller kids when skating down a ramp.

Max: Sometimes having more mass can give you an advantage. Let’s have Johnny and Jenny race again.

Scene Three: Max, Jenny, and Johnny are at the top of a ramp . . .

Max: In the last race, we wanted to see who would get a faster start. This race is for distance. I’m going to release you at the same time. We’ll see who travels farther without pumping.

Nick: Johnny’s got it in the bag.

Other Kid: No way, Jenny will beat him easily.

Max: Do you see that? Gravity pulls them down the ramp, but Johnny travels farther than Jenny.

Jenny: Max, what happened? I got a good start, but Johnny just passed right by me.

Max: Johnny’s larger mass takes more force to slow down or stop than your smaller mass. Friction between your wheels and the ground was the main force slowing both of you down. Johnny needed more friction to stop, so he traveled farther.

Cake Announcer: Time for cake!

Max: I don’t think these kids will let a little friction stand between them and chocolate cake.
Scene One: Max Axiom and the kids are at a skate park . . .

Max: I have another way to think about Newton’s second law. I need two volunteers.

Jenny: Pick me!

Johnny: I’ll do it!

Max: I’m going to push both of them with the same amount of force on a level surface. Who do you think will accelerate faster?

Nick: Johnny’s bigger, he’ll go faster!

Other Kid: Jenny’s an awesome skater, she’ll win!

Max: Both of my arms are equally strong. So the amount of force will be the same. Let’s see who gets a faster start.

Scene Two: Max pushes Jenny and Johnny forward . . .

Max: Like the tennis ball, Jenny has less mass than Johnny, so she gets a faster start with the same push. Johnny would need a stronger force to get moving as quickly.

Jenny: I’m like the tennis ball!

Johnny: Does that make me a bowling ball?

Nick: Uncle Max, Jenny won the race on a flat surface. But I’ve noticed that the bigger kids always travel farther than the smaller kids when skating down a ramp.

Max: Sometimes having more mass can give you an advantage. Let’s have Johnny and Jenny race again.

Scene Three: Max, Jenny, and Johnny are at the top of a ramp . . .

Max: In the last race, we wanted to see who would get a faster start. This race is for distance. I’m going to release you at the same time. We’ll see who travels farther without pumping.

Nick: Johnny’s got it in the bag.

Other Kid: No way, Jenny will beat him easily.

Max: Do you see that? Gravity pulls them down the ramp, but Johnny travels farther than Jenny.

Jenny: Max, what happened? I got a good start, but Johnny just passed right by me.

Max: Johnny’s larger mass takes more force to slow down or stop than your smaller mass. Friction between your wheels and the ground was the main force slowing both of you down. Johnny needed more friction to stop, so he traveled farther.

Cake Announcer: Time for cake!

Max: I don’t think these kids will let a little friction stand between them and chocolate cake.
Scene One: Max Axiom and the kids are at a skate park . . .

Max: I have another way to think about Newton’s second law. I need two volunteers.

Jenny: Pick me!

Johnny: I’ll do it!

Max: I’m going to push both of them with the same amount of force on a level surface. Who do you think will accelerate faster?

Nick: Johnny’s bigger, he’ll go faster!

Other Kid: Jenny’s an awesome skater, she’ll win!

Max: Both of my arms are equally strong. So the amount of force will be the same. Let’s see who gets a faster start.

Scene Two: Max pushes Jenny and Johnny forward . . .

Max: Like the tennis ball, Jenny has less mass than Johnny, so she gets a faster start with the same push. Johnny would need a stronger force to get moving as quickly.

Jenny: I’m like the tennis ball!

Johnny: Does that make me a bowling ball?

Nick: Uncle Max, Jenny won the race on a flat surface. But I’ve noticed that the bigger kids always travel farther than the smaller kids when skating down a ramp.

Max: Sometimes having more mass can give you an advantage. Let’s have Johnny and Jenny race again.

Scene Three: Max, Jenny, and Johnny are at the top of a ramp . . .

Max: In the last race, we wanted to see who would get a faster start. This race is for distance. I’m going to release you at the same time. We’ll see who travels farther without pumping.

Nick: Johnny’s got it in the bag.

Other Kid: No way, Jenny will beat him easily.

Max: Do you see that? Gravity pulls them down the ramp, but Johnny travels farther than Jenny.

Jenny: Max, what happened? I got a good start, but Johnny just passed right by me.

Max: Johnny’s larger mass takes more force to slow down or stop than your smaller mass. Friction between your wheels and the ground was the main force slowing both of you down. Johnny needed more friction to stop, so he traveled farther.

Cake Announcer: Time for cake!

Max: I don’t think these kids will let a little friction stand between them and chocolate cake.
Scene One: Max Axiom and the kids are at a skate park . . .

Max: I have another way to think about Newton’s second law. I need two volunteers.

Jenny: Pick me!

Johnny: I’ll do it!

Max: I’m going to push both of them with the same amount of force on a level surface. Who do you think will accelerate faster?

Nick: Johnny’s bigger, he’ll go faster!

Other Kid: Jenny’s an awesome skater, she’ll win!

Max: Both of my arms are equally strong. So the amount of force will be the same. Let’s see who gets a faster start.

Scene Two: Max pushes Jenny and Johnny forward . . .

Max: Like the tennis ball, Jenny has less mass than Johnny, so she gets a faster start with the same push. Johnny would need a stronger force to get moving as quickly.

Jenny: I’m like the tennis ball!

Johnny: Does that make me a bowling ball?

Nick: Uncle Max, Jenny won the race on a flat surface. But I’ve noticed that the bigger kids always travel farther than the smaller kids when skating down a ramp.

Max: Sometimes having more mass can give you an advantage. Let’s have Johnny and Jenny race again.

Scene Three: Max, Jenny, and Johnny are at the top of a ramp . . .

Max: In the last race, we wanted to see who would get a faster start. This race is for distance. I’m going to release you at the same time. We’ll see who travels farther without pumping.

Nick: Johnny’s got it in the bag.

Other Kid: No way, Jenny will beat him easily.

Max: Do you see that? Gravity pulls them down the ramp, but Johnny travels farther than Jenny.

Jenny: Max, what happened? I got a good start, but Johnny just passed right by me.

Max: Johnny’s larger mass takes more force to slow down or stop than your smaller mass. Friction between your wheels and the ground was the main force slowing both of you down. Johnny needed more friction to stop, so he traveled farther.

Cake Announcer: Time for cake!

Max: I don’t think these kids will let a little friction stand between them and chocolate cake.
Scene One: Max Axiom and the kids are at a skate park . . .

Max: I have another way to think about Newton’s second law. I need two volunteers.

Jenny: Pick me!
Johnny: I’ll do it!

Max: I’m going to push both of them with the same amount of force on a level surface. Who do you think will accelerate faster?

Nick: Johnny’s bigger, he’ll go faster!
Other Kid: Jenny’s an awesome skater, she’ll win!

Max: Both of my arms are equally strong. So the amount of force will be the same. Let’s see who gets a faster start.

Nick: Johnny’s bigger, he’ll go faster!
Other Kid: Jenny’s an awesome skater, she’ll win!

Max: Like the tennis ball, Jenny has less mass than Johnny, so she gets a faster start with the same push. Johnny would need a stronger force to get moving as quickly.

Jenny: I’m like the tennis ball!
Johnny: Does that make me a bowling ball?

Nick: Uncle Max, Jenny won the race on a flat surface. But I’ve noticed that the bigger kids always travel farther than the smaller kids when skating down a ramp.

Max: Sometimes having more mass can give you an advantage. Let’s have Johnny and Jenny race again.

Scene Two: Max pushes Jenny and Johnny forward . . .

Max: In the last race, we wanted to see who would get a faster start. This race is for distance. I’m going to release you at the same time. We’ll see who travels farther without pumping.

Nick: Johnny’s got it in the bag.
Other Kid: No way, Jenny will beat him easily.

Max: Do you see that? Gravity pulls them down the ramp, but Johnny travels farther than Jenny.

Jenny: Max, what happened? I got a good start, but Johnny just passed right by me.

Max: Johnny’s larger mass takes more force to slow down or stop than your smaller mass. Friction between your wheels and the ground was the main force slowing both of you down. Johnny needed more friction to stop, so he traveled farther.

Cake Announcer: Time for cake!

Max: I don’t think these kids will let a little friction stand between them and chocolate cake.